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Abstract. In a scalable quantum computer, based on trapped electrons in vacuum, qubits are encoded
in the external (cyclotron motion) and internal (spin) degrees of freedom. We show how to extend the
technique of composite pulses to manipulate the cyclotron oscillator without leaving the computational
subspace. In particular, we describe and discuss how to implement the explicit pulse sequence which
operates the conditional phase shift between the cyclotron and the spin qubits.

PACS. 03.67.Lx Quantum computation – 85.35.Gv Single electron devices

1 Introduction

Trapped particles, and especially ions in a Paul trap, are
one of the most promising systems to implement a quan-
tum computer. Since the seminal paper by Cirac and
Zoller [1], many other theoretical proposals have dealt
with trapped ions, accompanied as well by the first ex-
perimental tests of qubit manipulation [2–5]. Relevant
progress has been made, but we are still at the proof-of-
principle stage, with operations limited to very few qubits.
Hence, it is then worthy to investigate in other directions,
looking for alternative physical systems, and searching for
different approaches to quantum computation.

In this exciting competition [6] also trapped electrons,
stored in a so-called Penning trap [7], can play a signifi-
cant role. The most obvious advantage offered by the elec-
trons consists in the lighter mass (at least three orders of
magnitude with respect to ions), which in turns results in
higher trapping frequencies. In terms of quantum compu-
tation, this translates into a correspondingly faster clock
frequency. Moreover, the Penning trap in comparison with
RF ion traps promises weaker decoherence effects in view
of the reduced fluctuations of its static electric and mag-
netic fields. Other relevant properties of a trapped electron
are: (i) the ground state cooling and control of the cy-
clotron motion [8]; (ii) the extremely good isolation from
the environment, leading to a negligible damping and re-
duced thermal fluctuations; (iii) the accurate preparation,
manipulation, and detection of the electron state [9,10]
that make the system suitable for high precision measure-
ments and determination of fundamental constants, like
the electron g factor [11] and mass [12].
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Therefore, similarly to trapped ions, it has been pro-
posed to store qubits into the internal (spin) and exter-
nal (cyclotron and axial oscillators) degrees of freedom
of a single electron in a Penning trap [13–15]. The fun-
damental issue of the scalability has then been faced in
reference [16], suggesting an innovative design for a linear
array of Penning traps [17]. Further extensions, towards
a more compact and smaller device, are presently under
investigation. They include, for example, the possibility of
developing a planar Penning trap to form 2D trap arrays
on the same substrate [18].

The present work has been motivated by the theo-
retical proposal by Childs and Chuang [19] to perform
universal quantum computation with two-level systems.
This is, indeed, the situation of the electron, when a qubit
is encoded in the two possible orientations of its spin
along the external magnetic field. In the case of ion traps,
the other qubit is stored in the common center-of-mass
motion, whereas in our case in the cyclotron oscillator.
However, both systems are formally equivalent and face,
therefore, the same problem of dealing with an harmonic
oscillator storing one of the qubits. Being a multilevel sys-
tem, a direct resonant excitation of the harmonic oscillator
may lead to loose population outside the computational
subspace. So far, for the electron in a Penning trap, it
was suggested to use the rather small relativistic effects
that introduce anharmonicities in the cyclotron oscilla-
tor [14,15]. The appealing feature of the technique devel-
oped in [19] is the possibility to avoid populating higher
Fock states of the cyclotron motion, without perturbing
the harmonic potential of the trap.

The manuscript is organized as follows. In Section 2,
we introduce the theoretical model describing the quan-
tized motion of a single electron in a Penning trap, with
special emphasis on the cyclotron and spin degrees of
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freedom. The preparation and manipulation of the two
qubits is the subject of Section 3, where we apply a
multiple-pulse approach to construct the swapping gate
and the conditional phase gate. Our results and conclud-
ing remarks are summarized in Section 4.

2 Electron in a Penning trap

The external dynamics of a single electron in a Penning
trap consists of three independent motions: the mag-
netron, the axial, and the cyclotron oscillators [9]. Here,
for simplicity, we restrict the analysis to the cyclotron os-
cillator plus the spin precession around the homogeneous
static magnetic field of the trap. The cyclotron motion can
be effectively described in terms of bosonic creation and
annihilation operators

Hc = �ωc

(
a†

cac +
1
2

)
, (1)

since it is formally equivalent to a one-dimensional har-
monic oscillator of frequency ωc � |e|B/m, where B is the
magnetic field strength, e and m are, respectively, the elec-
tron charge and mass. The energy eigenstates are given by
the Fock states |n〉 with quantum number n = 0, 1, 2, . . .
The corresponding eigenvalues build up a ladder of equally
spaced energy levels, separated by �ωc.

The electron spin dynamics is governed by the Hamil-
tonian

Hspin = −µ · B =
g

2
µBσzB, (2)

where g is the electron giromagnetic factor, µB ≡ |e|�/2m
is the Bohr magneton, and σz is a Pauli matrix. Hence,
the two possible spin orientations along the magnetic field
correspond to the states | ↑〉 and | ↓〉, separated by the en-
ergy �ωs with ωs ≡ g|e|B/2m. Note that the spin flip fre-
quency ωs slightly differs from the cyclotron frequency ωc

because of the electron anomaly.
Qubits are encoded in the cyclotron oscillator and

spin states. The logical states 0 and 1 correspond, respec-
tively, to | ↓〉 and | ↑〉. The combined cyclotron and spin
states are conveniently denoted as |pn〉, with p = 0, 1 and
n = 0, 1, 2, . . . The resulting energy level diagram is pre-
sented in Figure 1. The computational space is restricted
to {|pn〉 with p, n = 0, 1}. However, being the cyclotron
oscillator a multilevel system, it is not obvious how to con-
fine the system dynamics to the lowest part of its spec-
trum. Indeed, a resonant excitation of the cyclotron mo-
tion would gradually populate Fock states with quantum
number n > 1. A clever solution to circumvent this prob-
lem is provided by the so-called composite pulses tech-
nique [20], already successfully applied to trapped ions [5].

3 Qubit manipulation

The spin qubit is directly addressed via a small transverse
magnetic field b(t) oscillating at the frequency ω, near to

|00〉

|10〉

|01〉
|02〉

|11〉
|12〉

ωs

ωc

ωa

Fig. 1. Schematic diagram of the combined spin and cyclotron
energy levels. The corresponding states are denoted by |pn〉,
with p = 0, 1 being the logical value assigned to the spin ori-
entation and n = 0, 1, 2, . . . the number of excitations in the
cyclotron oscillator. We have also indicated the relevant fre-
quencies of the system: the spin flip frequency ωs, the cyclotron
oscillation frequency ωc, and the anomaly transition frequency
ωa ≡ ωs − ωc.

the spin resonance [14]

Hint = −µ · b(t) =
g

2
µBσ · b(t), (3)

where σ ≡ (σx, σy, σz) are the Pauli matrices and

b(t) = b [cos(ωt)i + sin(ωt)j] . (4)

The coupling between the spin magnetic moment and
the applied magnetic field is proportional to the Rabi
frequency

Ωs ≡ gµBb

�
=

g|e|b
2m

. (5)

Hence, the complete spin Hamiltonian results from equa-
tions (2) and (3)

H = Hspin +Hint =
�

2
ωsσz +

�

2
Ωs (σx cosωt + σy sin ωt) .

(6)
The effect of the oscillating magnetic field on the spin
evolution becomes clearer if we move to a rotating frame
at the frequency ω

H(IP ) = exp
(

iH0t

�

)
H exp

(
− iH0t

�

)
, (7)

with H0 = �ωσz/2. The spin dynamics is then governed
by the Hamiltonian in interaction picture (IP)

H(IP ) =
�

2
(ωs − ω)σz +

�

2
Ωsσx. (8)

Therefore, in the new rotating frame the electron spin pre-
cesses at the frequency

Ω ≡
√

Ω2
s + (ωs − ω)2 (9)

around the axis

n =
Ωs

Ω
i +

ωs − ω

Ω
k. (10)
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When the external magnetic field is tuned on resonance
with the spin flip transition frequency ωs, the rotation
axis is directed along the x-axis. According to the interac-
tion time, an initially up (down) spin can be flipped into
a down (up) state. In terms of qubit state manipulation,
by changing the interaction time one can select any ro-
tation angle, thus preparing the electron spin in a linear
superposition of the logical states |0〉 and |1〉 [14]

|0〉 = |0〉 cos
(

Ωs

2
t

)
− i|1〉 sin

(
Ωs

2
t

)
, (11)

|1〉 = |1〉 cos
(

Ωs

2
t

)
− i|0〉 sin

(
Ωs

2
t

)
. (12)

A similar procedure cannot be applied to the cyclotron
qubit because we are dealing with a multilevel system of
equally spaced energy levels. Starting from the ground
state of the cyclotron oscillator, the interaction with a
resonant field would soon spread the population outside
the computational subspace. Working, instead, at the
anomaly frequency ωa ≡ ωs − ωc one would only popu-
late the extra level |02〉, as it can be seen from Figure 1.
Actually, the spin-cyclotron level |02〉 is later depleted by
means of another pulse of suitable duration.

From the practical point of view, the anomaly transi-
tion, which corresponds to a spin flip associated to a quan-
tum jump of the cyclotron oscillator, is produced with a
small magnetic field near the trap center. In previous ex-
periments for the determination of the electron anomaly,
the upper and lower portions of the trap electrodes were
split in order to obtain two effective current loops [9]. The
loops are then driven with oppositely directed currents at
the frequency ωd

I(t) = I cos(ωdt + φ), (13)

where I and φ represent, respectively, the intensity and the
phase of the alternating currents. This set-up produces the
required magnetic field

b1(t) = b1 [x(t)i + y(t)j] cos(ωdt + φ), (14)

with amplitude

b1 ≡ 3πa2dI

c(a2 + d2/4)5/2
, (15)

depending on the loop radius a and distance d. The elec-
tron spin is driven by the oscillatory field b1(t) according
to the Hamiltonian

Hdrive = −µ · b1(t)

=
g

2
µBb1 [σxx(t) + σyy(t)] cos(ωdt + φ). (16)

The alternating magnetic field introduces a coupling be-
tween the circular motion of the electron in the xy-plane
and its spin. The interaction Hamiltonian, equation (16),
can be recasted in terms of the raising and lowering oper-
ators for the spin motion

σ± ≡ σx ± iσy

2
, (17)

and of the annihilation and creation operators for the cy-
clotron and magnetron oscillators [14]

x ≡
√

�

2mω̃c

(
ac + a†

c + am + a†
m

)
, (18)

y ≡ i

√
�

2mω̃c

(
ac − a†

c − am + a†
m

)
. (19)

Here we have defined the frequency ω̃c ≡ √
ω2

c − 2ω2
z , with

ωz ≡ (eV0/mL2)1/2 being the axial oscillation frequency.
Its value depends on the voltage V0 applied between the
trap electrodes and on the characteristic trap size L.

After substituting equations (17), (18), and (19) into
the interaction Hamiltonian, equation (16), we obtain

Hdrive = gµBb1

√
�

2mω̃c
cos(ωdt + φ)

× [
σ+(ac + a†

m) + σ−(a†
c + am)

]
, (20)

which clearly shows how the electron spin, not only cou-
ples to the cyclotron oscillator, but also to the magnetron
motion. However, with the help of the interaction picture

σ± −→ σ± exp(±iωst), (21)

ac −→ ac exp(−iωct), (22)

am −→ am exp(+iωmt), (23)

one can see that this last effect is negligible when ωd =
ωa ≡ ωs − ωc

H
(IP )
drive � g

2
µBb1

√
�

2mω̃c

(
σ+ace

−iφ + σ−a†
ce

iφ
)
. (24)

The Hamiltonian, equation (24), has been derived in the
rotating wave approximation, which allows to eliminate
the fast rotating terms involving the magnetron motion.

Hence, the alternating magnetic field at the anomaly
frequency provides the required interaction between the
spin and the cyclotron qubits, that can be now manipu-
lated with the composite pulse technique.

The corresponding unitary time evolution is given by

U(t) = exp
(
− i

�
H

(IP )
drivet

)
, (25)

which, after some algebra, can be recasted as

U(t) = C(t) + iS(t), (26)



212 The European Physical Journal D

where

C(t) = σ+σ− cos
(

θ

2

√
aca

†
c

)

+ σ−σ+ cos
(

θ

2

√
a†

cac

)
, (27)

S(t) = σ+e−iφ

sin
(

θ

2

√
aca

†
c

)
√

aca
†
c

ac

+ σ−eiφ

sin
(

θ

2

√
a†

cac

)
√

a†
cac

a†
c. (28)

The parameter

θ ≡ −gµBb1

√
1

2m�ω̃c
t (29)

depends on the strength and on the duration of the pulse.
Starting from the expression, equation (26), of the

unitary evolution operator, we can construct its matrix
representation in the subspace spanned by the vectors
{|00〉, |01〉, |10〉, |11〉, |02〉}

M(θ, φ) =




1 0 0 0 0
0 A B 0 0
0 −B∗ A 0 0
0 0 0 C D
0 0 0 −D∗ C


 , (30)

where

A ≡ cos
(

θ

2

)
, (31)

B ≡ ieiφ sin
(

θ

2

)
, (32)

C ≡ cos
(

θ√
2

)
, (33)

D ≡ ie−iφ sin
(

θ√
2

)
. (34)

A careful choice of the interaction time, such that θ =
kπ

√
2 with k an integer, avoids populating the energy

level |02〉 outside the computational subspace. We also
note that the state |00〉 is left unchanged under the trans-
formation equation (30), since it not coupled to any other
energy level (see Fig. 1).

3.1 Swapping gate

The pulse sequence

M

(
π√
2
, 0

)
M

(
2π√

2
, φS

)
M

(
π√
2
, 0

)
(35)

with φS ≡ arccos[cot2(π/
√

2)] generates the swapping
gate between the cyclotron and the spin qubits. The first
pulse M(π/

√
2, 0) transfers the population from |11〉 to

|02〉. Then the second pulse M(2π/
√

2, φS) performs the
swapping operation between |01〉 and |10〉, without affect-
ing any other state. Finally, the pulse M(2π/

√
2, φS) re-

stores back the population from |02〉 to |11〉.
The swapping gate is essential to manipulate the cy-

clotron qubit. Indeed, we know how to perform any one-
qubit rotation using the small oscillating magnetic field,
equation (3), to control the spin state. Hence, we first ex-
change the information between the cyclotron and the spin
qubits. Then we apply the desired one-qubit gate to the
electron spin and, eventually, swap back the information
to the cyclotron qubit. This final swapping operation is
realized with the following pulses

M

(
π√
2
, π

)
M

(
2π√

2
, π + φS

)
M

(
π√
2
, π

)
. (36)

3.2 Conditional phase shift

The oscillatory magnetic field at the anomaly frequency,
equation (24), is also useful to perform conditional dy-
namics on the cyclotron and spin qubits. For example,
the two-qubit gate

|xy〉 −→ eixyϕ|xy〉 (37)

with x, y = {0, 1}, known as conditional phase shift,
changes the phase of the quantum register if and only
if both qubits are in the logic state 1. This operation is
realized in our system with a sequence of four pulses

M

(
π√
2
,
π

2

)
M(π, 0)M

(
π√
2
,
π

2

)
M(π, 0). (38)

Indeed, it is straightforward to prove that the most general
state of a two-qubit register

α|00〉 + β|01〉 + γ|10〉+ δ|11〉 (39)

is mapped, after the four pulses, onto

α|00〉 − β|01〉 − γ|10〉 − δ|11〉. (40)

Strictly speaking, apart from a global phase factor, the fi-
nal state, equation (40), of the two-qubit register amounts
to a change of π in the phase of |00〉 rather than of |11〉.
A different encoding of the logical states into the physical
states of the system solves this apparent inconsistency.
The counterintuitive encoding, which assigns to the cy-
clotron state |0〉 (|1〉) and to the spin state | ↓〉 (| ↑〉)
the logic value 1 (0), would lead to the expected result of
equation (37), with ϕ = π.

4 Conclusions

The cyclotron oscillator and the spin of a trapped elec-
tron can be used to store and manipulate qubits of in-
formation. Universal logic gates are performed by means
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of external oscillatory magnetic fields. With the present
proposal, we described a method to control the state of
the cyclotron oscillator for quantum computation, with-
out resorting to the anharmonicities. The trick is to send
pulses of proper duration at the anomaly frequency, in
order not to leave the computational subspace. This is
accomplished with a small oscillating magnetic field cou-
pling the cyclotron and the spin qubits. A similar set-up
is already used in experiments aiming at the direct mea-
surement of the electron anomaly [9]. We showed how to
implement the swapping gate, which combined with the
ability to prepare the electron spin in an arbitrary super-
position, allows for realizing any single-qubit gate on both
the cyclotron and the spin degrees of freedom. Moreover,
the same mechanism can produce conditional dynamics.
As an example, we provided the pulse sequence required
to realize the conditional phase gate.

This work applies to a single trapped electron con-
cepts and ideas proposed and developed in other contexts,
like nuclear magnetic resonance [20] and ion traps. Quan-
tum computation can only benefit from cross-field fertil-
ization and other techniques could be exported as well be-
tween different systems. In this respect, the conference on
“Quantum Information with Atoms, Ions and Photons”,
held in La Thuile, offered the best conditions to share
ideas, compare results, and define new challenges in dif-
ferent areas of physics, in a joint effort towards a working
quantum computer.

This research has been carried on in the frame of the con-
tract PAIS–MEPTRAP, funded by INFM, and by the Euro-
pean Union under the contract IST-FP6-003772 (QUELE).
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